Вводная лекция. В первой половине лекции вводятся обозначения и понятия, которые будут использоваться на протяжении всего курса: объекты, признаки, функция потерь, предсказательная модель, минимизация эмпирического риска, обучающая выборка, тестовая выборка, переобучение, скользящий контроль. Во второй половине лекции приводятся примеры прикладных задач классификации, регрессии, ранжирования. В конце кратко обсуждаются некоторые вопросы методологии машинного обучения: особенности реальных данных, межотраслевой стандарт CRISP-DM, организация вычислительных экспериментов.