Чем занимается специалист по Data Science и как начать работать в этой области?

Специалист в области Data Science строит на основе данных модели, которые помогают принимать решения в науке, бизнесе и повседневной жизни. Он может работать с неструктурированными массивами информации в разных сферах: от выявления элементарных частиц в экспериментах на БАК, анализа метеорологических факторов, анализа данных о перемещениях автотранспорта до исследования финансовых операций, поисковых запросов, поведения пользователей в Интернете.

В результате получаются модели, которые прогнозируют погоду, загруженность дорог, спрос на товары, находят снимки, где могут оказаться следы нужных элементарных частиц, выдают решения о предоставлении кредита, могут рекомендовать товар, книгу, фильм, музыку.

Анна Чувилина, автор и менеджер программы «Аналитик данных» Яндекс.Практикума, рассказала, какие задачи решает специалист в области Data Science или датасаентист, в чем состоит его работа и чем он отличается от аналитика данных.

Что такое Data Science?

Data Science — это применение научных методов при работе с данными, чтобы найти нужное решение. В широком смысле, естественные науки основаны на Data Science. Например, биолог проводит эксперименты и анализирует результаты для проверки своих гипотез. Он должен уметь обобщать частные наблюдения, исключать случайности и делать верные выводы.

Датасаентист работает с данными так же, как ученый в любой другой сфере. Он использует математическую статистику, логические принципы и современные инструменты визуализации, чтобы получить результат.

237

Сбор данных — это способ измерить процессы вокруг нас. А научные методы позволяют расшифровать большие массивы данных, найти в них закономерности и применить для решения конкретной задачи.

Кто такой специалист по Data Science?

Датасаентист обрабатывает массивы данных, находит в них новые связи и закономерности, используя алгоритмы машинного обучения, и строит модели. Модель — это алгоритм, который можно использовать для решения бизнес-задач.

Например, в Яндекс.Такси модели прогнозируют спрос, подбирают оптимальный маршрут, контролируют усталость водителя. В результате стоимость поездки снижается, а качество растет. В банках модели помогают точнее принимать решения о выдаче кредита, в страховых компаниях — оценивают вероятность наступления страхового случая, в онлайн-коммерции — увеличивают конверсию маркетинговых предложений.

Глобальные поисковые системы, рекомендательные сервисы, голосовые помощники, автономные поезда и автомобили, сервисы распознавания лиц — все это создано с участием датасаентистов.

Анализ данных — это часть работы датасаентиста. Но результат его труда — это модель, код, написанный на основе анализа. В этом главное отличие между датасаентистом и аналитиком данных. Первый — это инженер, который решает задачу бизнеса как техническую. Второй — бизнес-аналитик, больше погруженный в бизнес-составляющую задачи. Он изучает потребности, анализирует данные, тестирует гипотезы и визуализирует результат.

237

«Датасаентист решает задачи с помощью машинного обучения, например распознавание изображений или предсказание расхода материала на производстве. Результат его работы — работающая модель по техническому заданию, которая будет решать бизнес-задачу», — Анна Чувилина, автор и менеджер программы «Аналитик данных» в Яндекс.Практикуме.

Специалист по Data Science проходит те же карьерные ступени, что и другие профессионалы в IT: джуниор, мидл, тимлид или сеньор. В среднем, каждая ступень занимает от года до двух. Более опытный специалист лучше понимает бизнес-задачи и может предложить лучшее решение для них. Чем выше уровень, тем меньше датасаентист сфокусирован только на технических задачах. Он может оценивать проект и его смысловую составляющую.

Задачи специалиста по Data Science

Задачи различаются от компании к компании. В крупных корпорациях датасаентист работает с несколькими направлениями. Например, для банка он может решать задачу кредитной оценки и заниматься процессами распознавания речи.

Этапы работы над задачей у датасаентистов из разных сфер похожи:

— выяснение требований заказчика;

— решение принципиального вопроса «Целесообразно ли решать задачу методами машинного обучения?»;

— подготовка данных, их разметка;

— принятие метрик оценки эффективности модели;

— разработка и тренировка модели машинного обучения;

— защита экономического эффекта от внедрения модели;

— внедрение модели в производственные процессы и продукты;

— сопровождение модели.

Каждая новая итерация позволяет лучше понять проблемы бизнес—а, уточнить решение. Поэтому каждый этап повторяется снова и снова для развития модели и обновления данных.

237

Data Science работает и для стартапов, и для крупных корпораций. В первых специалисты работают в одиночку или небольшими командами над отдельными задачами, а во вторых — реализуют долгосрочные проекты в связке с бизнес-аналитиками, аналитиками данных, разработчиками, инфраструктурными администраторами, дизайнерами и менеджерами.

Руководитель проекта с аналитиками берёт на себя большую часть работы: общается с бизнесом, собирает требования, формирует техническое задание. В зависимости от уровня и принципов работы в компании, специалист по Data Science участвует в переговорах или получает задачи от руководителя проекта и аналитиков.

Следующий этап — сбор данных. Если в компании не налажены процессы для получения данных, датасаентист решает и эту задачу. Он внедряет инструменты, которые помогают автоматически получать и предварительно очищать, структурировать нужную информацию.

Разметка данных — это тоже способ навести в них порядок. Каждой записи присваивается метка, по которой можно определять класс данных: это спам или нет, клиент платежеспособен или недостаточно. Для этой задачи редко используют алгоритмы, метки проставляют вручную. Качественно размеченные данные имеют большую ценность.

«Со стороны заказчика часто присылаются первые данные, которые не готовы для анализа. Специалист их изучает и пытается понять взаимосвязи внутри данных. Для этого часто используется пайплайн — стандартная последовательность действий для процесса анализа данных, которая у каждого своя. Во время ‘‘просмотра’’ у специалиста возникают гипотезы относительно данных, которые он потом будет проверять», — говорит Анна Чувилина, автор и менеджер программы «Аналитик данных» в Яндекс.Практикум.

Во время обработки данные переводятся в формат, удобный для машинного обучения, чтобы запустить первое, «пробное» обучение. Оно должно подтвердить или опровергнуть гипотезы о данных, которые есть у специалиста по Data Science. Если гипотезы не подтверждаются, работа с этим набором данных прекращается. Если одна или несколько гипотез окажутся жизнеспособными — на выходе получается первая версии модели. Её можно назвать baseline-моделью или базовой, относительно которой на следующих итерациях можно искать улучшения в качестве работы модели. Это минимально работающий продукт, который можно показать, протестировать и развивать дальше.

Вместе с моделированием или перед ним выбирают метрики для оценки эффективности модели. Как правило, это две категории: метрики для бизнеса и технические. Бизнес-метрики отвечают на вопрос «каков экономический эффект от работы данной модели?» Технические определяют качество модели, например, точность предсказаний.

Модель оценивают на контролируемость и безопасность. Например, для задач медицинской диагностики это решающий фактор. Когда модель готова и протестирована, то её встраивают в производственный процесс (например, кредитный конвейер) или продукт (например, мобильное приложение). Она начинает приносить пользу в реальной жизни.

Ошибки в моделях могут дорого стоит компании. Например, неверная скоринговая модель создаст ситуацию, когда ненадежные заемщики массово не смогут возвращать кредиты. В результате банк понесёт убытки.

Что нужно для старта

Знание математической статистики, базовые навыки программирования и анализа данных нужны для входа в любую сферу, где может быть занят датасаентист. Следующие этапы потребуют более глубоких знаний. Набор необходимых скиллов и инструментов будет во многом зависеть от задач конкретной компании.

«Для решения простых задач и попадания на уровень джуниора достаточно базовых знаний машинного обучения, математического аппарата и программирования. От специалиста уровня мидл и сеньор уже требуется умение тонко настраивать параметры, которые влияют на общее качество результата. Список разделов из высшей математики и понимание математической постановки каждой модели на этому уровне на порядок выше, чем для джуниора» — Анна Чувилина, автор и менеджер программы «Аналитик данных» в Яндекс.Практикум.

Как правило, в Data Science используют SQL, Python, для сложных вычислений — C/C++. Хороший уровень английского поможет быстрее расти за счет чтения профессиональной литературы и общения с другими профессионалами отрасли.

Бэкграунд разработчика хорошо подходит для переквалификации в датасаентисты. Разработчики знают языки программирования, разбираются в алгоритмах и имеют представление о принципах работы инструментов в ИТ. В таком случае переход в новую специальность займет несколько месяцев. Важные конкурентные преимущества, доступные профессионалам из других сфер: лучшее понимание предметной области, сильные коммуникативные навыки.

От начинающего специалиста по Data Science работодатель ждёт:

— базовое знание математической статистики, алгоритмов машинного обучения;

— навыки подготовки данных к анализу с помощью библиотек;

— способность выбрать подходящий алгоритм под задачу и создать модель на его основе;

— умение защитить эффективность модели;

— способность успешно внедрить её в процесс или продукт.

Опыт работы с реальными бизнес-проектами для работодателя важнее, чем ученая степень или профильное высшее образование. Дипломы сильных вузов и тематические научные работы ценятся больше при выборе привлеченных консультантов на стратегические проекты. А по практическому опыту выбирают датасаентиста для решения ежедневных задач компании.

Перед датасаентистом не стоит задача охватить все области математического знания или освоить каждый программный инструмент, который можно применить для анализа данных и построения модели. Над масштабными и сложными проектами обычно работают группы специалистов. Здесь навыки и знания каждого дополняют общий инструментарий. Чтобы стартовать в профессии достаточно любить программирование, математику и не бояться сложных задач.

Краткий пересказ от YandexGPT